Structure Reports

Online

3-(4-Bromobenzoyl)-N-phenyl-1,3-oxazolidin-2-imine

ISSN 1600-5368

Taek Hyeon Kim, ${ }^{\text {a }}$ Jung Hee

 Jang ${ }^{\text {a }}$ and Uk Lee ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Applied Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.075$
$w R$ factor $=0.196$
Data-to-parameter ratio $=18.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$, was prepared by the reaction of 2-anilino-4-methyl-2-oxazoline with 4-bromobenzoyl chloride in the presence of potassium tert-butoxide at room temperature. X-ray crystallographic analysis shows that the endo-substituted product is formed.

Comment

Alkylation and acylation reactions of 2-amino-2-oxazolines bearing similarly ambident nucleophiles exhibit problems of regioselectivity, occurring either on the endocyclic or exocyclic N atom, depending on the experimental conditions and on the nature of the electrophilic reactants. The reaction of 2-amino-2-thiazolines with some electrophilic compounds has been investigated in detail (Avalos et al., 2000), but 2-amino-2oxazolines have been less studied (Ganboa et al., 1982; Lee et al., 2002). The reaction of 2-anilino-4-methyl-2-oxazoline with 4-bromobenzoyl chloride furnished regioselectively the endosubstituted product 3 -(4-bromobenzoyl)- N -phenyl-2-oxazolidinimine, (I), and its structure is reported here.

All bond lengths and angles in (I) show normal values (Table 1). The iminooxazoline ring adopts an envelope conformation (Fig. 1), with atom C 10 deviating from the $\mathrm{N} 1 /$ $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 2$ plane by $0.149 \AA$. The $\mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 2$ mean plane forms dihedral angles of 46.9 (3) and 62.5 (3) ${ }^{\circ}$ with the $\mathrm{C} 1-\mathrm{C} 6$ and C11-C16 rings, respectively.

Experimental

The title compound was synthesized following the procedure used by Jang et al. (2005) for related compounds. To a stirred solution of potassium tert-butoxide ($0.16 \mathrm{~g}, 1.43 \mathrm{mmol}$) and 2-anilino-4-methyl-2oxazoline ($0.27 \mathrm{~g}, 1.19 \mathrm{mmol}$) in anhydrous tetrahydrofuran (15 ml) under nitrogen at room temperature, 4-bromobenzoyl chloride $(0.34 \mathrm{~g}, 1.55 \mathrm{mmol})$ was added dropwise. The solution was stirred for 30 min , then quenched with water (30 ml) and extracted with diethyl ether. The combined extracts were dried over magnesium sulfate, filtered and concentrated. Purification by flash chromatography

Received 23 February 2006
Accepted 3 March 2006
afforded the title compound in 71% yield. Single crystals suitable for an X-ray diffraction study were obtained by recrystallization from hexane (m.p. 393-395 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$M_{r}=359.22$
Triclinic, $P \overline{1}$
$a=5.867(1) \AA$
$b=10.638(2) \AA$
$c=13.982(3) \AA$
$\alpha=69.44(3){ }^{\circ}$
$\beta=78.09(3)^{\circ}$
$\gamma=86.28(3)^{\circ}$
$V=799.5(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.492 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 34 reflections
$\theta=9.6-10.5^{\circ}$
$\mu=2.58 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colourless
$0.30 \times 0.20 \times 0.01 \mathrm{~mm}$

Data collection

Stoe STADI-4 diffractometer
$\theta_{\text {max }}=27.5^{\circ}$
$\omega / 2 \theta$ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.578, T_{\text {max }}=0.895$
3646 measured reflections
3646 independent reflections
2237 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0712 P)^{2}\right. \\
&+1.6199 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$1.898(5)$	$\mathrm{N} 1-\mathrm{C} 10$	$1.396(7)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.212(7)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.473(7)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.359(6)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.253(7)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.455(7)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.411(7)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.390(7)$		
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 9$	$108.9(4)$	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8$	$109.1(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 10$	$129.6(4)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11$	$121.5(5)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$120.2(4)$		

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: STADI4 (Stoe \& Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1996); program(s)

Figure 1
An ORTEP-3 (Farrugia, 1997) view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2004-202-C00255).

References

Avalos, M., Babiano, R., Cintas, P., Chavero, M. M., Higes, F. J., Jimenez, J. L., Palacios, J. C. \& Silvero, G. (2000). J. Org. Chem. 65, 8882-8892.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ganboa, I. \& Palomo, C. (1982). Bull. Soc. Chim. Fr. 2, 167-170.
Jang, J. H., Kim, H. J., Kim, J. N. \& Kim, T. H. (2005). Bull. Korean Chem. Soc. 26, 1027-1028.
Lee, G.-J., Kim, T. H., Kim, J. N. \& Lee, U. (2002). Tetrahedron Asymmetry, 3, 9-12.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). STADI4, X-RED and X-SHAPE. Stoe \& Cie Gmbh, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

